

Where are all the electrospun medical devices?

Case studies of product development from an industry perspective

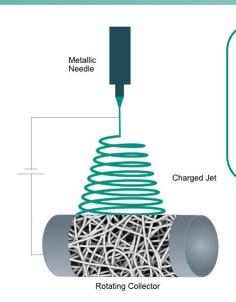
John Duckworth PhD

30 June 2022

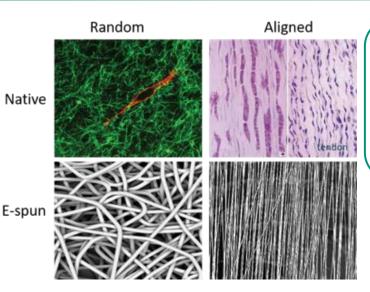
About The Electrospinning Company

We bring our ideas and biomaterial expertise to collaborate in an open and transparent way on product development

Biomaterial Platform

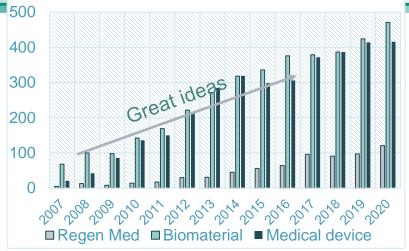

- Electrospinning technology and associated engineering
- ISO 13485 certification since 2015
- Medical Device and Regenerative Medicine Markets

Company


- Contract design, development, manufacturing services
- Proprietary biomaterials for partnering and licensing
- Strategic relationship with Confluent Medical technologies
- Located on Harwell Innovation Campus (near Oxford, UK)

Electrospinning Technology

A medical grade synthetic or natural polymer solution is exposed to an electric field and stretched into thin micro-to submicron fibres and collected

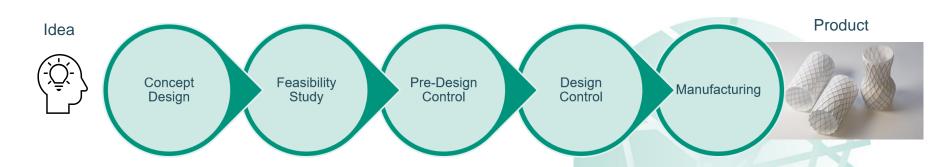


Electrospun fibres of aligned or random orientation can mimic the structure of native extracellular matrix

Electrospinning innovation just entering clinical markets

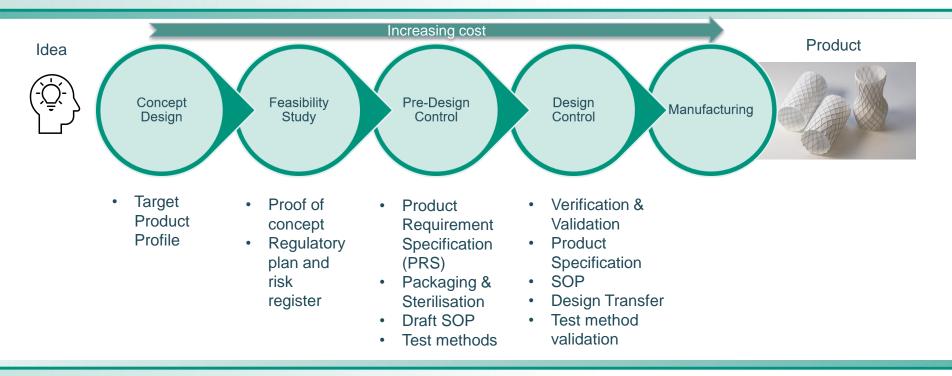
PUBMED Search: Electrospinning and

Of biomaterial research groups have an electrospinning setup


4,444 patents mention Electrospinning in their claims

Product	Approval
Medprin ReDura [™] (dura)	On market (60 countries)
Zeus bioweb™ PTFE for e.g. stent coating	USA and other
ZB Biowick™ orthopaedic	USA, Japan
PK Papyrus coated stent	CE Mark, FDA
Acera Restrata® (wound), Cerafix® (dura mater)	FDA 510(k)
ReBossis® (bone void filler)	FDA 510(k)
Nanofiber solutions Rotium™ (orthopaedic), Pheonix™ (wound)	FDA 510(k)
Tisseos® (dental)	CE mark.
Xeltis Restorex® heart valve	Clinical trials
Afyx Rivelin dental patch/drug delivery	Clinical trials
St Theresa Medical Surgiclot®	Clinical trials

S. Omer, L. Forgách, R. Zelkó, I. Sebe, Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics. 13 (2021)


Challenges of translation

- Consistent and Scalable manufacturing process
 - Regulators confident to approve use
 - Predictable cost of goods from efficient and reliable process
 - Would you put this into a person?

From Design to Manufacturing

Our projects

Broad range of therapeutic applications and stages

Academic/Pre-clinical

Clinical (Phase I/II/III)

Commercial

Sports medicine (3)

Artificial cornea

Vascular access device

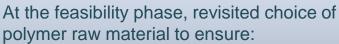
Dura repair membrane

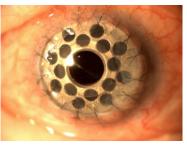
Aortic device

Breast reconstruction

Stress urinary incontinence

Synthetic amniotic membrane




K-Pro

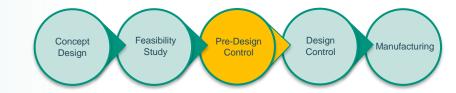
- Synthetic cornea keratoprosthesis
- Optical lens embedded in electrospun skirt
- Tissue integration eliminates need for visible, permanent sutures
- In clinical trials in Israel, France and Canada

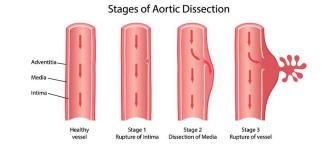
- · Consistency as the process scales
- Security of supply chain

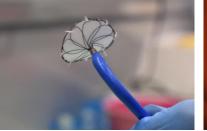
*Boston Keratoprosthesis

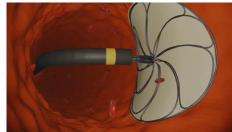
ArtiFascia® Dural Graft

- Company was lean spin-out Electrospinning Company provided clinical grade development and manufacturing capacity
- Synthetic dura mater surgical patch sheet of porous biopolymer nanofibres plus adhesive layer
- Tissue integration provides tight and permanent resealing of dura mater after surgery

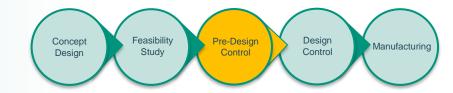

- Pivotal clinical trials complete
- Finalising Process Validation for regulatory dossier (FDA and EU)
- Planning process scale within regulatory parameters



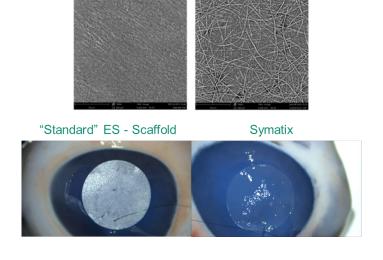



Aortic repair patch

- Biomimetic bioresorbable adhesive patch
- Can cover ruptured aorta and integrate surrounding tissue to reform vessel wall
- Patented microfibrous structure and applicator
 - Company spun out of university
- Had done small animal trials successful
- We are optimising process to de-risk the regulatory process and minimise future production costs
 - Test methods
 - Accuracy/tolerance in specifications



*Aortic (Heart) Aneurysm & Aortic Dissection | Mount Elizabeth Hospitals



Symatix®: Synthetic Amniotic Membrane

HAM

- Electrospun scaffold + biomaterial composite
- Synthetic alternative to human amniotic membrane (HAM)
- Many advantages over harvested human tissue
 - Scalable, storable, tuneable, sterile
 - Building on previous experience with academic research project
 - Collaborative project with University of Nottingham and hospital
 - Concept design has been clinician-led
 - Ensure clinical acceptance
 - Minimise regulatory risk

Symatix® Membrane

Conclusions

How can my idea become a manufactured product?

- Simplicity of design to de-risk regulatory pathway
 - Drugs
 - Multiple materials

- Previous regulation
 - Are there similar things on the market already you can point to?
 - Have raw materials been used in other products?
- Involving end-users early on
 - No good making a product clinicians hate using
- Preparation! Ask for help early and often!

Dziękuję bardzo!

Thank you!

Please make sure to see my colleague's presentation at 16:20 in Room S3 A

Dr. Konstantina Kanari -Electrospinning and Metal Stents – A Good Fit?

